NUTATION-FREE MOTIONS \mathbb{N} A SOLUTION OF THE PROBLEM OF MOTION OF A GYROSTAT

PMM Vol. 41, № 1, 1977, pp. 179-181
P. M. BURLAKA
(Donetsk)
(Received October 2, 1976)
A solution of the problem of motion of a gyrostat obtained by E. I. Kharlamova in [1] is investigated. The conditions of existence of nutation-free motions (in which the nutation angle is constant) in this solution, are derived. A survey of the basic results obtained in the problem of nutation-free motions is given in [2].
Kharlamova determined a solution based on an integro-differential equation which was also derived by her in [1]. The equation was obtained from the equations given in [3], under the assumption that the center of gravity and the gyrostatic moment vector lie in the principal plane of the inertia ellipsoid constructed for a fixed point. Following [1], we denote by $a, a_{1}, a_{2}, b_{1}, b_{2}$ the components of the gyration tensor in the special axes; by $\lambda, \lambda_{1}, \lambda_{2}$ the components of the gyrostatic moment; by $\boldsymbol{v}, \boldsymbol{\nu}_{1}, \boldsymbol{v}_{2}$ the components of the unit vector collinear with the force of gravity; by x, y, z the components of the moment of momentum; by Γ the product of the weight of the gyrostat and the distance between the center of gravity and the fixed point. We adopt the Hesse condition ($a_{2}=a_{1}$) and $b_{2}=0, \lambda_{2}=0$. Finally we pass to the dimensionless variables and parameters. To do this we refer the variables $x, y, z, \xi[1]$ and the parameters λ, λ_{1} to the quantity $\sqrt{\bar{\Gamma} / b}$, and the components a, a_{1} of the gyration tensor to b. Then the Kharlamova solution becomes

$$
\begin{aligned}
& x=\xi+a_{1} \lambda_{1}, \quad y=\frac{c_{0}}{\xi}+l+\xi\left(c_{2}-\frac{a-a_{1}}{2}\right) \\
& x^{2}=\frac{1}{\xi^{2}}\left(m_{4} \xi^{4}+m_{3} \xi^{3}+m_{2} \xi^{2}+m_{1} \xi-c_{0}^{2}\right) \\
& \nu=s_{0}+s_{1} \xi+s_{2} \xi^{2}, \quad v_{1}=\frac{c_{0} c_{1}}{\xi}+s_{0}^{\prime}+s_{1}^{\prime} \xi+s_{2}^{\prime} \xi^{2} \\
& v_{2}=z\left(c_{1}+2 c_{2} \xi\right), \frac{d \xi}{d t}=-\xi z
\end{aligned}
$$

where

$$
\begin{align*}
& l=c_{1}+\frac{a_{1}\left(a \mu-\lambda^{*}\right)}{a a_{1}-1}, \quad s_{0}=\frac{1}{a_{1}}\left(c_{1}{ }^{2}+a_{1} c_{1} \lambda^{*}+2 c_{1} c_{2}\right) \tag{2}\\
& s_{0}^{\prime}=c_{1}{ }^{2}+c_{1} \mu+2 c_{0} c_{2}, \quad s_{1}=\frac{1}{a_{1}{ }^{2}+1}\left[6 a_{1} c_{1} c_{2}+c_{1}\left(a_{1}{ }^{2}+1\right)+\right. \\
& \left.2 a_{1} c_{2}\left(\mu+a_{1} \lambda^{*}\right)\right] \\
& s_{1}^{\prime}=\frac{1}{2\left(a_{1}{ }^{2}+1\right)}\left[6 c_{1} c_{2}\left(a_{1}{ }^{2}-1\right)-c_{1}\left(a-a_{1}\right)\left(a_{1}{ }^{2}+1\right)+4 a_{1} c_{2}\left(a_{1} \dot{\mu}-\lambda^{*}\right)\right] \\
& s_{2}=\frac{c_{2}}{4+a_{1}{ }^{2}}\left[6 a_{1} c_{2}+\left(3 a_{1}{ }^{2}-a a_{1}+4\right)\right], \quad s_{2}^{\prime}=\frac{c_{2}}{4+a_{1}{ }^{2}}\left[2\left(a_{1}{ }^{2}-2\right) c_{2}-\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.\left(2 a+a a_{1}{ }^{2}-a_{1}{ }^{3}\right)\right] \\
& m_{1}=-2 c_{0}\left(c_{1}+\mu\right) \\
& m_{2}=-\frac{c_{0}}{a_{1}\left(4+a_{1}^{2}\right)}\left[4-a_{1}\left(a-a_{1}\right)\left(3+a_{1}^{2}\right)+2 a_{1} c_{2}\left(1+a_{1}{ }^{2}\right)\right]- \\
& \frac{1}{2 a_{1} c_{2}\left(1+a_{1}{ }^{2}\right)}\left[c_{1}{ }^{2}\left(1+a_{1}{ }^{2}\right)+4 a_{1}{ }^{2} c_{1} c_{2}\left(2 \lambda^{*}+a_{1} \mu\right)+\right. \\
& \left.2 a_{1}{ }^{8} c_{2}\left(\mu^{2}+\lambda^{*^{2}}\right)+2 a_{1} c_{1}{ }^{2} c_{2}\left(4+a_{1}{ }^{2}\right)\right] \\
& m_{3}=\frac{1}{a_{1}{ }^{2}+1}\left\{2 c_{1} c_{2}\left(5-a_{1}{ }^{2}\right)+c_{1}\left(a-a_{1}\right)\left(1+a_{1}{ }^{2}\right)+\right. \\
& \left.2 c_{2}\left[2 a_{1} \lambda^{*}+\mu\left(1-a_{1}^{2}\right)\right]-\left(a_{1}{ }^{2}+1\right)\left[2 \lambda^{*}-\mu\left(a-a_{1}\right)\right]\right\} \\
& m_{4}=\frac{1}{4\left(4+a_{1}{ }^{2}\right)}\left\{4\left(8-a_{1}{ }^{2}\right) c_{2}{ }^{2}+4\left[2 a+a_{1}{ }^{2}\left(a-a_{1}\right)\right] c_{2}-\right. \\
& \left.\left(4+a_{1}^{2}\right)\left[4+\left(a-a_{1}\right)^{2}\right]\right\} \\
& c_{1}=\frac{1}{\left(4+a_{1}^{2}\right)\left[6 c_{2}+\left(a+a_{1}\right)\right]}\left\{2 c_{2}\left[\mu\left(a_{1}{ }^{2}-2\right)-a_{1} \lambda^{*}\left(2 a_{1}{ }^{2}+5\right)\right]+\right. \\
& \left.\lambda^{*}\left(3 a_{1}{ }^{2}-a a_{1}+4\right)+\mu\left(a_{1}{ }^{3}-a_{1}{ }^{2} a-2 a\right)\right\} \\
& 6 c_{2}=2 \delta-\left(a+a_{1}\right), \quad \delta= \pm\left(a^{2}+a_{1}{ }^{2}-a a_{1}+3\right)^{1 / 2} \\
& \lambda^{*}=\lambda+a_{1} \lambda_{1}, \quad \mu=a_{1} \lambda+\lambda_{1}\left(a_{1}{ }^{2}-a a_{1}+1\right)
\end{aligned}
$$

The quantity c_{0} is given by

$$
\begin{align*}
& A c_{0}{ }^{2}+B c_{0}+C=0 \tag{3}\\
& A=8 c_{2}{ }^{2}\left(1+a_{1}{ }^{2}\right)\left(4+a_{1}^{2}\right), \quad B=2 c_{1} c_{2}\left\{2 c_{1} c_{2}\left(8-11 a_{1}{ }^{2}-a_{1}{ }^{4}\right)+\right. \\
& \left.\quad 4 a_{1} c_{2}\left(4+a_{1}{ }^{2}\right)\left(\lambda^{*}-a_{1} \mu\right)+a_{1} c_{1}\left(1+a_{1}{ }^{2}\right)\left[a_{1}\left(a_{1}-a\right)-4\right]\right\} \\
& C=\left(4+a_{1}{ }^{2}\right)\left\{c_{1}^{4}\left[2 c_{2}\left(1-2 a_{1}{ }^{2}\right)-a_{1}\left(1+a_{1}{ }^{2}\right)\right]+4 a_{1} c_{1}{ }^{3} c_{2}\left[\lambda^{*}\left(1-a_{1}{ }^{2}\right)+\right.\right. \\
& \left.\left.\quad a_{1} \mu\right]+2 a_{1}{ }^{2} c_{1}{ }^{2} c_{2}\left(\lambda^{* 2}+\mu^{2}\right)-2 a_{1}{ }^{2} c_{2}\left(1+a_{1}{ }^{2}\right)\right\}
\end{align*}
$$

In contrast to [1], the dependence of the quantities m_{2} and c_{0} on the basic parameters is given here in the explicit form.

We note that $\lambda^{*}=0, \mu=0$ yields a solution obtained by Dokshevich in [4] which was given a geometrical interpretation in [5] using the hodograph method.

Let us consider the domain of variation of the dimensionless parameters in which the solution is real. Since we investigate the problem of motion of a gyrostat, the triangular inequalities imposed on the moments of inertia of the gyrostat are discarded. From the conditions of positive definiteness of the kinetic energy of the gyrostat, follows $a a_{1}-$ $1>0$. The second restriction imposed on the parameters is given by Eq. (3): $B^{3} \ldots$ $4 A C \geqslant 0$. The variable ξ varies over the interval where the right-hand side of the expression for z^{2} in (1) is nonnegative.

Let us tind the limiting value of the function z^{2}

$$
m_{4} \xi^{4}+m_{3} \xi^{9}+m_{2} \xi^{2}+m_{1} \xi-c_{0}^{2}=0
$$

The discriminant of Eq. (4) has the form

$$
G=g_{2}{ }^{3}-27 g_{s^{2}}
$$

$$
\begin{aligned}
& g_{2}=-m_{4} c_{0}^{3}-1 / 4 m_{1} m_{3}+1 / 12 m_{2}{ }^{2} \\
& g_{3}=-1 / 18 m_{2} m_{4} c_{0}^{2}+1 / 48 m_{1} m_{2} m_{3}-1 / 18 m_{1}^{2} m_{4}+1 / 1_{1} m_{3}{ }^{2} c_{0}{ }^{2}-1 / 219 m_{2}^{3}
\end{aligned}
$$

We write the inequalities

$$
\begin{equation*}
1 / 1_{18} m_{3}{ }^{2}-1 / 6 m_{2} m_{4}>Q, \quad 3 /{ }_{18} m_{3}{ }^{4}-m_{2} m_{3}{ }^{2} m_{4}+m_{2}{ }^{2} m_{4}{ }^{2}+4 m_{4}{ }^{3} c_{0}{ }^{2}+m_{1} m_{3} m_{4}{ }^{2}>0 \tag{5}
\end{equation*}
$$

which determine, together with the discriminant, the condition for the roots of (4) to be real. The conditions imposed on the parameters under which the solution will be real are: (1) $G \geqslant 0$ and the inequalities (5), (2) $G<0$.

Let us consider the conditions of existence of nutation-free motions relative to the vertical in the solution in question. The equality $\alpha \nu+\beta v_{1}+\gamma \nu_{2}=\alpha_{0}$, where α, β, γ, α_{0} are constants, represents the necessary and sufficient condition for such motions to exist. In the present case we have a constant angle between the vectors $v_{,}\left(\nu, v_{1}, v_{2}\right)$ and $\mathrm{e}(\alpha, \beta, \gamma)$; this angle is permanently tied to the body. Let us substitute ν, v_{1}, v_{2} from (1) into the last relation and require that the resulting equality is an identity in ξ. Using the inequality

$$
m_{4}=-\frac{1}{4+a_{1}^{2}}\left[\left(a+c_{1}^{\prime}\right)^{2}+\left(1+a_{1} c_{2}^{\prime}\right)^{2}\right]<0, \quad c_{2}^{\prime}=c_{2}-\frac{a-a_{1}}{2}
$$

we find

$$
\begin{equation*}
\gamma=0, \quad c_{0} c_{1}=0, \quad \alpha s_{2}+\beta s_{2}^{\prime}=0, \quad \alpha s_{1}+\beta s_{1}^{\prime}=0, \quad \alpha 0=\alpha s_{0}+\beta s_{0}^{\prime} \tag{6}
\end{equation*}
$$

Consider the condition which follows from the third and fourth equations of (6)

$$
\begin{equation*}
s_{1}^{\prime} s_{2}-s_{1} s_{2}^{\prime}=0 \tag{7}
\end{equation*}
$$

Substituting into it $s_{1}, s_{2}, s_{1}^{\prime}, s_{2}^{\prime}$ from (2), we obtain

$$
\begin{aligned}
& 2 c_{2}\left(a_{1}^{2}+1\right)\left(a_{1} \lambda^{*}-2 \mu\right)-2 \mu\left(a_{1}^{3}+a_{1}+a\right)+\lambda^{*}\left(a_{1}^{4}-a_{1}^{3} a+3 a_{1}^{2}-\right. \\
& \left.\quad 3 a a_{1}+4\right)=0
\end{aligned}
$$

or, after some transformations

$$
\begin{align*}
& 2 c_{2}\left[3 a_{1} \tau-\sigma\left(a_{1}^{2}-2\right)\right]+\sigma\left(2 a+a a_{1}^{2}-a_{1}{ }^{3}\right)+\tau\left(3 a_{1}^{2}-a a_{1}+4\right)=0 \tag{8}\\
& \sigma=\mu+a_{1} \lambda^{*}, \quad \tau=a_{1} \mu-\lambda^{*}
\end{align*}
$$

It can easily be shown that the solution τ / σ of Fq. (8) can be written in the form $2 \tau / \sigma=\left(a_{1}-a\right)-2 c_{2}$ which after substitution of c_{2} from (2), yields

$$
\begin{equation*}
3 \tau / \sigma=\left(2 a_{1}-a\right)-\delta \tag{9}
\end{equation*}
$$

At this particular value of τ / σ we have $c_{1}=0$. This shows that the condition (7) implies that the coefficient c_{1} is zero, therefore the equation $c_{0} c_{1}=0$ holds.

From this it follows that the necessary and sufficient condition of existence of nuta-tion-free motions in the solution in question is given by the relation (9) only.
We shall now show that when condition (9) holds, values of the dimensionless parameters a, a_{1}, σ, τ exist for which the solution (2) is real. Let $a=2, a_{1}=2, \sigma=4, \delta=$ -2.65 . Then $c_{2}=-1.55, c_{0}=-0,64, g_{2}=3.38, g_{3}=1.21$. For these values of the parameters $G>0$ and the inequalities (5) hold, consequently Eq. (4) has four real roots. This shows that a nutation-free motion is physically realizable.

The author thanks P. V. Kharlamov for formulating the problem and guidance.

REFERENCES

1. Kharlamova, E. I., On the algebraic invariant relationship in the integroudifferential equation of the problem of motion of a solid with a fixed point under the Hesse conditions. In the book: Mechanics of Solids. № 3,Kiev, "Naukova dumka", 1971.
2. Gorr, G. V., Certain properties of precessional motions relative to the vertical of a heavy solid body with one fixed point. PMM Vol. 38 , № $3,1974$.
3. Kharlamov, P. V., Lectures in the Dynamics of Solids. Pt. 1, Izd. Novosibirsk. Inst., 1965.
4. Dokshevich, A. I., Integrable cases of the problem of motion of a heavy solid about a fixed point. Prikl. mekhan. , Vol. 4, № 11, 1968.
5. Burlaka, P. M. and Gorr, G.V., Motion of a solid in a specific example of integrability of the Euler-Poisson equations. In the book: Mechanics of Solids. № 7, Kiev, "Naukova Dumka", 1974.
