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A solution of the problem of motion of a gyrostat obtained by E, I, Kharlamova
in [1] is investigated. The conditions of existence of nutation-free motions (in
which the nutation angle is constant) in this solution, are derived, A survey of
the basic results obtained in the problem of nutation-free motions is given in
21
Kharlamova determined a solution based on an integro-differential equation which
was also derived by her in [1]. The equation was obtained from the equations given in
[3],under the assumption that the center of gravity and the gyrostatic moment vectorlie
in the principal plane of the inertia ellipsoid constructed for a fixed point. Following
[1], we denote by a, ay, a3, b;, b, the components of the gyration tensor in the special
axes; by A, A, A, the components of the gyrostatic moment; by v, v;, v, the compo~-
nents of the unit vector collinear with the force of gravity; by =z,y, z the components
of the moment of momentum; by T' the product of the weight of the gyrostat and the
distance between the center of gravity and the fixed point, We adopt the Hesse condi-
tion (ey = a;) and b, = 0, A; = 0. Finally we pass to the dimensionless variables and
parameters, To do this we refer the variables =, y, z, £ [1] and the parameters A, A,
to the quantity VT 75, and the components 4, a; of the gyration tensor to &, Thenthe
Kharlamova solution becomes
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The quantity ¢, is given by
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In contrast to [1], the dependence of the quantities m, and ¢, on the basic parameters is
given here in the explicit form,

We note that A* = 0, p = 0 yields a solution obtained by Dokshevich in f4] which
was given a geometrical interpretation in [5] using the hodograph method.

Let us consider the domain of variation of the dimensionless parameters in which the
solution is real, Since we investigate the problem of motion of a gyrostat, the triangular
inequalities imposed on the moments of inertia of the gyrostat are discarded. From the
conditions of positive definiteness of the kinetic energy of the gyrostat, follows aa; —

1 > 0. The second restriction imposed on the parameters is given by Eq.(3): B2 —
4AC > 0. The variable § varies over the interval where the right-hand side of the ex-
pression for z? in (1) is nonnegative,

Let us find the limiting value of the function z?

my&t - my® + mpE? + myE — ¢g? =0

The discriminant of Eq, (4) has the form
G = g — 2gs’
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g2 = —mycy® — 1/4m1m3 + ygmy?

g3 — _1/137'"/2"24602 + 1/437”1”12"13 — 1/10m12m4 + lllsmszcoz -_— 1/210771/58
We write the inequalities

1/ gmg? — g mgmy > Q, 3/ gmg* — mamgPmy + mgPmg® 4= dmgdce® + mymgm,?® >0 (5
which determine, together with the discriminant, the condition for the roots of (4) to be
real, The conditions imposed on the parameters under which the solution will be real
are: (1) 6> 0 and the inequalities (5), (2) G < 0.

Let us consider the conditions of existence of nutation-free motions relative to the
vertical in the solution in question, The equality av + Bv; 4 yva = @, where o, 8, v,
oy are constants, represents the necessary and sufficient condition for such motions to
exist, In the present case we have a constant angle between the vectors v, (v, vy, v3)
and e (a, B, y) ; this angle is permanently tied to the body, Let us substitute v, vy, vy
from (1) into the last relation and require that the resulting equality is an identity in %.
Using the inequality

1 a—a
my= — g Faz? [(aFey B4 (1 4+ a1e2')2] <0, ¢ = ¢ — 5 L
we find
vy=0, c¢;, =0, as,+ Bsy’ =0, as 4 Ps;’ =0, a,= as + PBs’ (6)
Consider the condition which follows from the third and fourth equations of (6)
s1'ss — 518’ =0 @)
Substituting into it s, 83, 8", s," from (2), we obtain
2¢, (a2 + 1) (ah* — 2p) — 2p (a® -+ o + a) + A* (a* — as%a + 30,2 —
3aa;, + 4) =0

or, after some transformations
2¢, 8yt — 0 (4,2 — 2)] + o (2a + aa? — a,8) + T (32,2 — aa; + 4) =0 (8)
0= u 4 aA*, T=agypn — A*

It can easily be shown that the solution 7/ ¢ of Eq.(8) can be written in the form
2t/ ¢ = (ay — @) — 2¢c; which after substitution of ¢, from (2), yields

3t/o=(2a;—a)— 8 €)
At this particular value of 7/ o0 we have ¢; = 0. This shows that the condition (7)
implies that the coefficient ¢, is zero, therefore the equation c4c; = 0 holds.

From this it follows that the necessary and sufficient condition of existence of nuta-
tion-free motions in the solution in question is given by the relation (9) only.

We shall now show that when condition (9) holds, values of the dimensionless parame-
ters a, a;, 0, T exist for which the solution (2) is real, Let a = 2,4a;, =2, 0= 4, 6 =
—2.65. Then c¢; = —1.55, ¢ = —0,64, g; = 3.38, gg = 1.21. For these values of the
parameters G>> 0 and the inequalities (5) hold, consequently Eq. (4) has four real roots.
This shows that a nutation-free motion is physically realizable,
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